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Abstract

This experiment was conducted to characterize the effect of fasting versus satiety feeding on plasma concentrations of GH, IGF-I, and

cortisol over a nychthemeron. Channel catfish fingerlings were acclimated for two weeks under a 12L:12D photoperiod, then fed or fasted

for 21 d. On day 21, blood samples were collected every 2 h for 24 h. Weight of fed fish increased an average of 66.2% and fasted fish lost

21.7% of body weight on average. Average nychthemeral concentrations of plasma GH were not significantly different between fed (24.7 ng/

mL) and fasted (26.8 ng/mL) fish, but average nychthemeral IGF-I concentrations were higher in fed (23.4 ng/mL) versus fasted (17.8 ng/

mL) fish. An increase in plasma IGF-I concentrations was observed in fasted fish 2 h after a peak in plasma GH, but not in fed fish. Average

nychthemeral plasma cortisol concentrations were higher in fed (14.5 ng/mL) versus fasted (11.0 ng/mL) fish after 21 d. Significant

fluctuations and a postprandial increase in plasma cortisol were observed in fed fish and there was an overall increase in plasma cortisol of

both fasted and fed fish during the scotophase. The present experiment indicates little or no effect of 21-d fasting on plasma GH levels but

demonstrates fasting-induced suppression of plasma IGF-I and cortisol levels in channel catfish.

Published by Elsevier Inc.
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1. Introduction

In many vertebrate species, catabolic states such as

fasting result in elevated circulating growth hormone (GH)

concentrations (for a review, see Harvey et al. (1995)).

Several studies with fish have demonstrated increased

concentrations of plasma GH during food deprivation

(Wagner and McKeown, 1986; Barrett and McKeown,

1989; Sumpter et al., 1991; Kakisawa et al., 1995; Rand-

Weaver et al., 1995; Johnsson et al., 1996; Small et al.,

2002). In contrast, fasting typically has the opposite effect

on circulating concentrations of insulin-like growth factor I

(IGF-I) in fish and mammals (Duan et al., 1994; Thissen et
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al., 1994). The apparent paradox between increased

concentrations of circulating GH and decreased concen-

trations of circulating IGF-I has been explained for fish as

tissue resistance to GH (Duan and Plisetskaya, 1993; Duan

et al., 1995) and a reduction in hepatic GH-receptors (GHR)

during starvation (Gray et al., 1992; Pérez-Sánchez et al.,

1994, 1995). The effects of fasting on nychthemeral plasma

GH and IGF-I concentrations have not been characterized in

channel catfish, Ictalurus punctatus. In fact, much of the

characterization of GH and IGF-I nychthemeral and

seasonal plasma profiles in fish has focused on salmonid

species (Boujard and Leatherland, 1992; Pérez-Sánchez et

al., 1994; Gomez et al., 1996).

Circulating basal glucocorticoid levels exhibit signifi-

cant fluctuations over a nychthemeron in many vertebrate

species (Krieger, 1979; Dauphin-Villemant and Xavier,

1987; Summers and Norman, 1988; Breuner et al., 1999).
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In rats and humans, glucocorticoid levels often peak right

before or after feeding (for review, see Krieger (1979)).

Dallman et al. (1993) suggest that this modulation of

glucocorticoids by feeding is a bi-directional relationship,

with both fasting and feeding, in some cases, stimulating

plasma glucocorticoids. In fish, feed intake and circulating

glucocorticoid levels also appear to have a bi-directional

relationship (for review, see Mommsen et al. (1999)) and

the effects of feed intake are not fully understood. Kelley

et al. (2001) reported a six-fold increase in circulating

cortisol levels in gobies fasted for 20 d; however, Peterson

and Small (2004) observed that the effect of fasting on

plasma cortisol levels in channel catfish was dependent on

the length of the fast. In several salmonid species, temporal

rhythms with higher nocturnal plasma cortisol levels have

been observed (Rance et al., 1982; Pickering and Pottinger,

1983; Nichols and Weisbart, 1984).

Channel catfish are an economically important species in

the Southern United States. In culture, channel catfish are

often subjected to periods of restricted feeding and fasting

as management tools for water quality and disease (Hawke

et al., 1998; Robinson and Li, 1999). Recent literature has

demonstrated significant effects of feed restriction and

fasting on channel catfish metabolic and endocrine func-

tions (Peterson and Small, 2004; Small and Peterson, 2005).

In those studies, conclusions were based on measurements

taken at a single point in time. Nothing is known

concerning the effects of feeding and fasting on nychthem-

eral hormone levels in channel catfish. To learn more about

the regulation of GH, IGF-I, and cortisol production in

channel catfish, we examined nychthemeral hormone

profiles in fasted catfish and in catfish fed twice daily to

satiety for 21 d.
2. Materials and methods

2.1. Animals

Channel catfish (I. punctatus) fingerlings of the

NWAC103 strain were maintained at the USDA-ARS

Catfish Genetics Research Unit, Stoneville, MS aquacul-

ture facility following accepted standards of animal care,

approved by the Institutional Animal Care and Use

Committee (IACUC) according to USDA-ARS policies

and procedures. Two weeks prior to starting the experi-

ment, 480 catfish (mean weight=14.8 g) were randomly

stocked into forty-eight 76-L aquaria (10 fish/aquarium)

and allowed to acclimate. During the 2-week acclimation

period, all fish were fed a commercial floating catfish

feed (36% crude protein; Land O’Lakes Farmland Feed,

Fort Dodge, IA) twice daily (07.00 and 15.00 hours) to

satiety. Throughout the acclimation and experimental

periods, the fish were reared in 26 -C well-water under

a 12L:12D photoperiod, with lights coming on at 06.00

hours daily.
2.2. Experimental design

All the fish were weighed at the start of the experiment

and treatments were randomly assigned such that fish in 24

aquaria were fed twice daily to satiety for 21 d and fish in

the remaining aquaria were fasted for 21 d. On day 21, fish

in the fed treatment were fed once at 0650 hours. Beginning

at 0700 hours and continuing every 2 h for 24 h, all the fish

from two tanks per treatment were euthanized in a solution

of tricaine methanesulfonate (0.3 g/L; Finquil; Argent

Chemical Laboratories, Richmond, WA, USA), weighed,

and bled from the caudal vasculature into syringes coated

with heparin. During the scotophase, fish were rapidly

captured by dim flashlight, euthanized in the dark, and then

moved to a separate adjoining area where sampling was

quickly conducted under dim light. Plasma was separated

from whole blood by centrifugation, stored at �80 -C, and
later analyzed for GH, IGF-I, and cortisol.

2.3. Immunoassays

2.3.1. Growth hormone ELISA

Plasma GH concentrations were determined using a

homologous antigen-capture enzyme-linked immunosorb-

ent assay (ELISA) validated for quantifying circulating

levels of channel catfish GH (Drennon et al. 2003).

Sensitivity of the assay was 2.0 ng/mL and recovery of

channel catfish GH from spiked plasma samples was

�100%. Intra- and inter-assay coefficients of variation

(CV) were 7.7% and 11.2%, respectively. Dose–response

inhibition curves using serially diluted pituitary homoge-

nates and plasma samples consistently showed parallelism

with the GH standard curve.

2.3.2. IGF-I fluoroimmunoassay

Plasma IGF-I concentrations were determined using a

heterologous time-resolved fluoroimmunoassay (TR-FIA)

validated for quantifying circulating levels of channel

catfish IGF-I (Small and Peterson, 2005). Sensitivity of

the assay was 0.20 ng/mL and recovery of IGF-I from

spiked plasma samples was �95%. Intra- and inter-assay

CVs were 5.1% and 9.8%, respectively. Dose–response

inhibition curves using serially diluted plasma samples

consistently showed parallelism with the IGF-I standard

curve.

2.3.3. Cortisol fluoroimmunoassay

Plasma cortisol concentrations were determined using a

heterologous TR-FIA kit (R060-101; PerkinElmer Life

Sciences, Akron, OH) modified and validated for channel

catfish (Small and Davis, 2002). Sensitivity of the assay was

1.2 ng/mL and recovery of cortisol from spiked plasma

samples was �99%. Intra- and inter-assay CVs were 6.5%

and 9.0%, respectively. The displacement curve for serially

diluted channel catfish plasma paralleled the cortisol stand-

ard curve.
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2.4. Statistics

The experimental data for both treatments (fed and

fasted) were subjected to two-way analysis of variance

(ANOVA) mixed-model procedures using SAS software

system version 8.00 (SAS Institute, Cary, NC) with treat-

ment, time, and treatment� time as the fixed effects. When

significant differences were found using ANOVA, pairwise

contrasts were made using an LSD test to identify

significant differences at the 5% level. Results are presented

as mean+pooled standard error (S.E.).

07.00 09.00 11.00 13.00 15.00 17.00 19.00 21.00 23.00 01.00 03.00 05.00

Time of Day (h)

Fig. 2. Nychthemeral profile of circulating GH levels between catfish fed

twice daily to satiety and catfish fasted for 21 d. Data plotted are

meanTpooled S.E. (n =20). Fish in the fed treatment group were fed at

06.50 hours on the day of sampling. The scotophase is indicated by the dark

bar along the x-axis. Plasma GH concentrations were not significantly

( P >0.05) different within time between fed and fasted fish.
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3. Results

3.1. Condition of experimental fish

At the end of the 21-d experiment, weight of fed fish

increased an average of 66.2% and fasted fish lost 21.7% of

body weight on average. Average final weights of fed fish

(24.1 g) were significantly greater (P <0.05) than weights

of fasted fish (11.9 g; Fig. 1). Survival of experimental fish

was 100%.

3.2. Plasma levels of growth hormone

Average nychthemeral plasma GH concentrations were

highly variable and not significantly different (P >0.05)

between fed (24.7 ng/mL) and fasted (26.8 ng/mL) fish (Fig.

2). Plasma GH concentrations in fasted fish were signifi-

cantly (P <0.05) higher at 15.00 hours when compared to

the lowest concentration at 05.00 hours. In fed fish, no

differences (P >0.05) were observed in plasma GH con-

centrations between times.

3.3. Plasma levels of IGF-I

Average nychthemeral plasma IGF-I concentrations were

significantly (P <0.05) higher in fed (23.4 ng/mL) com-
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Fig. 1. Mean mass (Tpooled S.E.) of channel catfish fed twice daily to

satiety or fasted for 21 d. An asterisk denotes significant ( P <0.05)

differences between means within time.
pared to fasted (17.8 ng/mL) catfish (Fig. 3). Plasma IGF-I

concentrations in fasted fish increased significantly

(P <0.05) at 17.00 hours and were higher than plasma

concentrations at all other time-points with the exception of

01.00 hours (P=0.0613). In fed fish, plasma IGF-I

concentrations were the highest (P <0.05) at 07.00 hours,

the time of morning feeding.

3.4. Plasma levels of cortisol

Average nychthemeral plasma cortisol concentrations

were significantly (P <0.05) higher in fed (14.5 ng/mL)

versus fasted (11.0 ng/mL) catfish (Fig. 4). Feeding-

associated changes in plasma cortisol were observed in

fed fish with cortisol levels being highest (P <0.05)

immediately after feeding. Significant fluctuations in plasma

cortisol levels were observed in fed fish throughout the
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Fig. 3. The nychthemeral profile of circulating IGF-I levels between catfish

fed twice daily to satiety and catfish fasted for 21 d. Data plotted are

meanTpooled S.E. (n =20). Fish in the fed treatment group were fed at

06.50 hours on the day of sampling. The scotophase is indicated by the dark

bar along the x-axis. An asterisk indicates significant ( P <0.05) differences

within time between fed and fasted fish.
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Fig. 4. The nychthemeral profile of circulating cortisol levels between

catfish fed twice daily to satiety and catfish fasted for 21 d. Data plotted are

meanTpooled S.E. (n =20). Fish in the fed treatment group were fed at

06.50 hours on the day of sampling. The scotophase is indicated by the dark

bar along the x-axis. An asterisk indicates significant ( P <0.05) differences

within time between fed and fasted fish.
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photophase. An increase in circulating cortisol in fed fish

during the scotophase between 01.00 and 03.00 hours

corresponded to a significant (P <0.05) plasma cortisol

increase in fasted fish at 03.00 hours.
4. Discussion

The effect of fasting on average nychthemeral plasma

GH and IGF-I levels in channel catfish is similar to that

previously reported by Small and Peterson (2005), in which

a single time-point sample after 2 weeks of fasting

demonstrated no effect of fasting on plasma GH levels but

a decrease in plasma IGF-I levels. After 4 weeks of fasting,

however, Small and Peterson (2005) reported both a

significant increase in circulating GH levels and a decrease

in plasma IGF-I levels. Together with the present study,

these results demonstrate that circulating levels of GH

respond more slowly to fasting than do plasma IGF-I

concentrations in channel catfish and support the conclusion

that decreased circulating IGF-I concentrations during

fasting are not the result of impaired GH secretion (Thissen

et al., 1999). In other teleost species, reduced hepatic

binding capacity for GH during fasting appears to be one of

the mechanisms responsible for the decline in circulating

IGF-I (Pérez-Sánchez et al., 1994, 1995; Gray et al., 1990).

Small and Peterson (2005) hypothesized that the observed

increase in channel catfish plasma GH after 4 weeks of

fasting was due to low circulating IGF-I, resulting in

reduced negative feedback on GH synthesis and release.

In rainbow trout, IGF-I has been shown to negatively

regulate GH release (Pérez-Sánchez et al., 1992).

Plasma IGF-I levels of fasted catfish in the present study

increased 2 h after an increase in plasma GH concentration,

but a similar pattern was not observed in fed catfish. Since

both entrainment and ‘‘masking’’ of hormonal rhythms in
fishes by physiological responses to treatments have been

documented (see Meier (1993)), it is possible that feeding

per se may have masked the temporal increase in IGF-I of

fed catfish. Even so, temporal changes in IGF-I and the

effects of fasting on nychthemeral concentrations have been

largely unexplored. In rats, Donaghue et al. (1990) observed

no evidence of episodic IGF-I release or temporal variations

entrained to light or feeding cycles. In fish, studies of

diurnal GH and IGF-I release are often disparate or

incomplete. Reports of asynchronous release in trout (Le

Bail et al., 1991; Gomez et al., 1996) contradict reports of

temporal rhythms and episodic release profiles in both trout

(Reddy and Leatherland, 1994) and carp (Zhang et al.,

1994). Differences in experimental design and physiological

status of the fish between studies make direct comparisons

and definitive conclusions difficult. This is exemplified by

the effect that different feeding protocols have on plasma

hormone and metabolite levels (Holloway et al., 1994).

When trout are fed at a set time of day versus being fed ad

libitum via a demand feeder, the temporal plasma hormone

levels change or even disappear (Boujard et al., 1993;

Reddy and Leatherland, 1994). Observations such as these

led Holloway et al. (1994) to conclude that the time of daily

feeding, method of food administration, and presumably the

level of feeding were all critical in determining the nature of

temporal hormone release.

In fasted trout, plasma cortisol levels have been reported

to decrease depending on the degree of food deprivation

(Sumpter et al., 1991; Farbridge and Leatherland, 1992;

Leatherland and Farbridge, 1992; Holloway et al., 1994).

The opposite has been reported for gobies (Kelley et al.,

2001) and mixed effects have been previously reported for

channel catfish (Peterson and Small, 2004). Peterson and

Small (2004) observed an increase in plasma cortisol of

catfish fasted for 30 d but observed no effect of fasting on

cortisol levels after 14, 45, and 60 d of fasting. Similar to

most studies, however, their observations were based on

plasma cortisol levels sampled at only one time of the day.

When plasma cortisol concentrations were averaged over

the nychthemeron in the present study, cortisol levels in

fasted catfish decreased after 21 d of fasting and cortisol

levels in fed fish exhibited significant temporal fluctuations.

Differences in the findings of these two studies might be

related to differences in feeding frequency or initial nutri-

tional state of the fish, which might further be associated

with nychthemeral fluctuations of plasma cortisol in fed

catfish.

Plasma cortisol levels have been extensively studied in

fishes and are perhaps the best characterized physiological

variable with respect to temporal rhythms (Boujard and

Leatherland, 1992). Temporal and feeding-entrained release

of cortisol into circulation has been demonstrated in a

number of teleost species. Circadian-like rhythms, in which

plasma cortisol levels increase during the scotophase, have

been reported for killifishes, Fundulus grandis (Garcia and

Meier, 1973), goldfish (Peter et al., 1978; Spieler and
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Noeske, 1984), rainbow trout (Rance et al., 1982), brown

trout, Salmo trutta (Pickering and Pottinger, 1983), and

stickleback, Gasterosteus aculeatus (Audet et al., 1986). A

similar trend for channel catfish toward increased plasma

cortisol levels during the scotophase was observed in the

present study. Furthermore, in fed catfish a postprandial

cortisol increase followed by temporal fluctuations in

plasma levels during the photophase was also observed.

Dramatic fluctuations in plasma glucocorticoids over the

nychthemeron are common to many vertebrate species

(Krieger, 1979; Dauphin-Villemant and Xavier, 1987;

Summers and Norman, 1988; Breuner et al., 1999), as is

entrainment of glucocorticoid rhythm to the light :dark cycle

(Krieger, 1979). In teleost fishes, there is also evidence of

temporal cortisol release being entrained to feeding (Bry,

1982; Pickering and Pottinger, 1983; Spieler and Noeske,

1984; Laidley and Leatherland, 1988; Boujard and Leather-

land, 1992; Holloway et al., 1994). In the present study,

plasma cortisol levels did not increase at 15.00 hours in fed

fish, the time at which those fish had been fed throughout

the study prior to the day of sampling. This suggests a lack

of entrainment of cortisol release to feeding. As such, it can

be concluded that the increase in plasma cortisol observed

10 min following the morning feeding might be a

physiological result of feeding itself or possibly a result of

stress associated with competitive feeding activity, but not a

result of anticipated feeding.

Boujard and Leatherland (1992) have suggested that both

photoperiod- and feeding-entrained rhythms might be

present in fish, one superimposed on the other. This is

supported by mammalian literature in which postprandial

increases in cortisol are overlaid on a circadian rhythm

(Follenius et al., 1982; Shiraishi et al., 1984; Honma et al.,

1983, 1984; Saito et al., 1989). Although an increase in

plasma cortisol levels during the scotophase, similar to that

reported for other teleost fishes, was observed in the present

study, definitive conclusions regarding a circadian cortisol

rhythm in channel catfish cannot be made since sampling

was only conducted every 2 h and during a single

nychthemeron.
5. Conclusion

Understanding the regulation of hormone release in fish

is important for studies of the endocrine control of

physiological traits. In culture, channel catfish are often

subjected to periods of restricted feeding and fasting

(Hawke et al., 1998; Robinson and Li, 1999) and recent

studies have sought to identify the effects of fasting on

endocrine, metabolic, and physiological parameters corre-

lated to growth (Peterson and Small, 2004; Small and

Peterson, 2005). Studies of the type reported here illustrate

the importance of feeding status and sampling time on

circulating hormone levels. Temporal differences in circu-

lating hormone levels, whether feeding-entrained or the
result of putative circadian rhythms may have major

implications on the interpretation of results obtained from

single time-point measurements. Further experimental stud-

ies with channel catfish should determine whether or not

hormone release profiles are altered by the time of daily

feeding and the level and frequency of feeding.
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